A Genome-Wide RNAi Screen Reveals MAP Kinase Phosphatases as Key ERK Pathway Regulators during Embryonic Stem Cell Differentiation
نویسندگان
چکیده
Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.
منابع مشابه
Brf1 posttranscriptionally regulates pluripotency and differentiation responses downstream of Erk MAP kinase.
AU-rich element mRNA-binding proteins (AUBPs) are key regulators of development, but how they are controlled and what functional roles they play depends on cellular context. Here, we show that Brf1 (zfp36l1), an AUBP from the Zfp36 protein family, operates downstream of FGF/Erk MAP kinase signaling to regulate pluripotency and cell fate decision making in mouse embryonic stem cells (mESCs). FGF...
متن کاملGenome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells.
The extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signal-transduction cascade is one of the key pathways regulating proliferation and differentiation in development and disease. ERK signaling is required for human embryonic stem cells' (hESCs') self-renewing property. Here, we studied the convergence of the ERK signaling cascade at the DNA by mapping genome-wide k...
متن کاملRNAi screening for kinases and phosphatases identifies FoxO regulators.
Forkhead box class O (FoxO) transcription factors are key regulators of growth, metabolism, life span, and stress resistance. FoxOs integrate signals from different pathways and guide the cellular response to varying energy and stress conditions. FoxOs are modulated by several signaling pathways, e.g., the insulin-TOR signaling pathway and the stress induced JNK signaling pathway. Here, we repo...
متن کاملA genetic screen for components of the mammalian RNA interference pathway in Bloom-deficient mouse embryonic stem cells
Genetic screens performed in model organisms have helped identify key components of the RNA interference (RNAi) pathway. Recessive genetic screens have recently become feasible through the use of mouse embryonic stem (ES) cells that are Bloom's syndrome protein (Blm) deficient. Here, we developed and performed a recessive genetic screen to identify components of the mammalian RNAi pathway in Bl...
متن کاملThe Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER.
ERK MAP kinase plays a key role in relaying extracellular signals to transcriptional regulation. As different activity levels or the different duration of ERK activity can elicit distinct responses in one and the same cell, ERK has to be under strict positive and negative control. Although numerous genes acting positively in the ERK signaling pathway have been recovered in genetic screens, muta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012